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In many surveillance video applications, it is of interest to recognize a region of interest
(ROI), which often occupies a small portion of a low-resolution, noisy video. This paper
proposes an edge-preserving maximum a posteriori (MAP) estimation based super-
resolution algorithm using a weighted directional Markov image prior model for a ROI
from more than one low-resolution surveillance image. Conjugate gradient (CG)
optimization based on standard operations on images is then developed to improve
the computational efficiency of the algorithm. The proposed algorithm is tested on
different series of surveillance images. The experimental results indicate that the
proposed algorithm has considerable effectiveness in terms of both objective
measurements and visual evaluation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

High-resolution (HR) images are useful in many
applications such as surveillance, video frame freezing,
medical diagnostics, and military information gathering,
etc. However, because of the high cost and physical
limitations of the high precision optics and image sensors,
it is not easy to obtain the desired HR images in many
cases. Therefore, super-resolution (SR) image reconstruc-
tion techniques, which can reconstruct one or a set of HR
images from a sequence of low-resolution (LR) images of
the same scene, have been widely researched in the last
two decades.

Super-resolution image reconstruction refers to a
process that produces a HR image from a sequence of LR
images. It overcomes the inherent resolution limitation by
bringing together the additional information from each
image. Generally, SR techniques can be divided into
frequency domain algorithms and spatial domain algo-
rithms. Much of the earlier SR work was developed in the
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frequency domain using discrete Fourier transform (DFT),
such as the work of Tsai and Huang [1], Kim et al. [2,3] and
so on. More recently, discrete cosine transform (DCT) [4]
and wavelet transform based SR methods [5-7] have also
been proposed. In the spatial domain, typical reconstruc-
tion models include non-uniform interpolation [8], itera-
tive back projection (IBP) [9], projection onto convex sets
(POCS) [10-13], maximum likelihood (ML) [14], maximum
a posteriori (MAP) [15-17], hybrid ML/MAP/POCS [18], and
adaptive filtering [19]. Based on these basic reconstruction
models, researchers have produced many extended algo-
rithms, such as the joint formulation of reconstruction
and registration [20-23], algorithms for multi-spectral
and color [24,25], hyper-spectral [26], and compressed
[27,28] sequence, etc. Amongst the numerous solution
techniques featuring in the literature, the MAP estimation
method is one of the most promising.

In many surveillance video applications, it is of
interest to recognize an object that is selected as a
region of interest (ROI), such as numbers, words, or labels
that often occupy a small portion of a low-resolution,
noisy video [29]. In these circumstances, edges of the
object are often very useful and important for surveil-
lance applications, but the commonly used Gaussian
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Markov random field regularization (GMRF) in the MAP-
based SR cannot effectively preserve sharp edges in the
estimated images. To achieve this, several edge-preser-
ving regularizations have been proposed, such as
Huber-Markov regularization [15] and bilateral-TV reg-
ularization [30]. This paper proposes a weighted direc-
tional Markov image prior model, which utilizes different
weights for different directional smoothness measures of
the edge pixels to reduce the smoothing effect of the
common Markov random field prior along edges. Con-
jugate gradient optimization is then developed to
estimate the HR image. Standard operations on images
such as convolution, warping, sampling are used to
improve the computational efficiency of the algorithm.
Experimental results show that the proposed algorithm
can effectively preserve edges and detailed information
in the reconstructed image.

The rest of the paper is organized as follows. Section 2
presents the image observation model of the SR problem.
The motion estimation method employed is described in
Section 3. In Section 4, the MAP estimation based
reconstruction algorithm is explained. Experimental re-
sults are provided in Section 5, and Section 6 concludes
this paper.

2. Image observation model

The image observation model is employed to relate the
desired referenced HR image to all the observed LR
images. Typically, the imaging process involves warping,
followed by blurring and down-sampling to generate LR
images from the HR image. Let the underlying HR image
be denoted in the vector form by z = [z;,2;, ..., 21, N, XLZNZ]T,
where L{N; x [;N, is the HR image size. Letting L; and
L, denote the down-sampling factors in the horizontal
and vertical directions, respectively, each observed LR
image has the size Nj x N,. Thus, the LR image can
be represented as y, = D’k,l,yk,Zw~~aYk,N1><N2]T: where
k=1,2,...,P, with P being the number of LR images.
Assuming that each observed image is contaminated by
additive noise, the observation model can be represented
as [18]

Yk = DB Mz + ny (1)

where M, is the warp matrix with the size of
LiN1LyN; x LiN1L;N,, By, represents the camera blur

{2 ki?@ j@

matrix also of size LiN;LyN, x L{N{L,N5, D is a N{N, x
LiN1L,N, down-sampling matrix, and n, represents the
NiN; x 1 noise vector. It should be noted that all the
images are assumed to have the same blurring function, so
the matrix B, can be substituted by B

Vi = DBMyz + my, = Az + 1 2)

Fig. 1 illustrates this equation.

3. Motion estimation method

Motion estimation/registration plays a critical role in
SR reconstruction, where it is necessary to select a frame
from the sequence as the reference one. In general, the
sub-pixel motions between the reference frame and the
unreferenced frame can be modeled and estimated by a
parameter model. This section introduces the motion
estimation methods employed.

It is assumed that the motion of the ROI during the se-
quence is a globally translational motion and the motions
of all points can often be modeled by a parametric model.
Generally, the relationship between the observed kth and
Ith frames can be expressed by

Vius Xu) = Y (X X0) + €11 (Xus Xo) 3)

where (x,,x,) denotes the pixel site, y.(xy,X,) is a pixel in
frame k, 0 is the vector containing the corresponding
motion parameters, y}f"g)(xu,xv) is the predicted pixel
of yr(xy,x,) from frame [ using parameter vector 6,
and g(xy,Xy) denotes the model error. In the literature,
the six-parameter affine model and eight-parameter
perspective model are widely used. Here the concentra-
tion is on the affine model, in which y;l’e’(xu,x,/) can be
expressed as

YO, %) = Yi(@o + Q1%y + G2Xe, bo + bixu + Doxy)  (4)

In this model, 6 = (ag, a, as, bo, b1, b2)" contains six geo-
metric model parameters. To solve 0, we can employ the
least square criteria, which has the following minimiza-
tion cost function:

E0) = lly, —y 12 (5)

Using the Gauss-Newton method, the six affine para-
meters can be iteratively solved by

A0 =[N =g (6)

Fig. 1. Block diagram illustration of the observation model (2), where the desired high-resolution image is at the extreme left with the observed image at

the extreme right.
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and
O = 0" + AO (7

Here, n is the iteration number, A0 denotes the corrections
of the model parameters, 1" is the residual vector that is
equal to y, — yk“’@”), and J" = ar"/a0" denotes the gradient

matrix of r".

4. Image reconstruction algorithm

4.1. MAP formulation

In most situations, the problem of SR is an ill-posed
inverse one because the information contained in the
observed LR images is not sufficient to solve the HR image.
In order to obtain more desirable SR results, the ill-posed
problem should be stabilized to be well-posed. The MAP
method, which can easily include image prior or regular-
ization, is a good framework to describe the SR problem
from the statistical point of view. Let the full set of P LR
images be denoted by y = [y1,y3,...,y5". The purpose is
to realize the MAP estimate of HR image z, given the
observed LR images y. The estimate can be computed by

Z = argmaxp(zly) 8)

Applying Bayes’ rule, Eq. (8) becomes

5 p(y12)p(2)

Z=argmax————- 9
g 0) )]

Since p(y) can be considered a constant and can be
eliminated from the optimization in Eq. (9), it can be
rewritten as

Z = argmaxp(y|z)p(z) (10)

Assuming the LR images are independent, we obtain

2 = argmax(] [poxiop(@)] an
k

Using the monotonic logarithm function, it can be
expressed as

z = argmax[y_logp(yi|z) + log p(2)] (12)
k

Usually, the noise n; in (1) is assumed to be one of the
zero mean white Gaussian types; thus the likelihood
distribution p(y,|z) has the form

1 ly = Azl
POKIZ) = ¢ exp( BT e (13)
where C; is a constant, and aﬁ is the error variance. The
image prior p(z) in (12) has the Gibbs form

1
p@ = C—zexp(—F @) (14)

where G, is also a constant, and I'(z) is the prior energy
functional. Substituting (13) and (14) in (12), after
some manipulation, Cy, C;, and 62 can be safely dropped,
and the maximization of this posterior probability
distribution is equivalent to the following regularization
problem:

2 = argmin[y _lly, — Azl* + AI'(2)] (15)
k

where the first term 3, lly, — AezI® is the data fidelity
term, I'(z) acts as the regularization term, and A is the
regularization parameter.

4.2. Weighted directional Markov regularization

For the regularization term, Tikhonov regularization
[16,18,21,27,28] and Gauss—Markov [20] are commonly
employed. A common criticism of these regularization
methods is that the sharp edges and detailed information
in the estimates tend to be overly smoothed [31]. Here, a
weighted directional Markov regularization is proposed to
preserve the edges and detailed information in the
reconstruction process.

The energy functional of the common Markov random
field is defined as

LiN{—1L,N,—1 4

r@=> V2= 2; 2; le(d;{}z) (16)
1= J=! m=

ceC

where V,(-) is some function of a local group of points ¢
called cliques, and C denotes the set of all cliques
throughout the image, p(-) is the function of smooth
measure duz, p(-) can use a quadratic function or a Huber
function, which correspond to Gauss-Markov regulariza-
tion and Huber-Markov, respectively.

dfiz denotes the directional smooth measures at pixel
z;;, and they are given as

1
di,jx = Xijy1 — 2X,'J' + Xij-1

V2
diZJ‘x = 7("1‘71,[71 = 2Xij + Xit14+1)

3
dijX = Xip1j — 2Xij + Xi_1

V2
dix = 5 Kic1jn = 2% + Xip1j-1) (17)

It is noted that the intensity difference between the
pixels perpendicular to the image edges is larger, while
that between the pixels along the edges is smaller. The
traditional MRF regularization poses the same constraint
coefficients for the four directional smooth measures,
with the same extent constraint to the central edge pixel
from the neighborhood pixels, which causes the sharp
edges and detailed information in the estimated image to
be overly smoothed. To preserve the sharp edges in the
estimate, the constraint between the pixels perpendicular
to the edges should be reduced and that between the
pixels along the edges should be increased. For this, the
weighted Markov random field (WMRF) regularization is
proposed to preserve the sharp edges.

The energy functional of the WMREF is defined as

LiN{—1L,N,—1 4

ro=3% Veay= Y > > wmpd]z) (18)
i=0 Jj=0 m

ceC i j: =1

where wp, (m=1,2,3,4) are the positive weight coeffi-
cients for the directional smooth measure.

The Prewit operators are first used to detect edge pixels
in the image. For the non-edge pixels, the four weights are
set to w; = Wy = w3 = wy = 1; while for the edge pixels,
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the weights should satisfy the following properties:
(a) the weights w, should be inversely proportional to
the smooth measure function p(d;?}z); (b) 231:1 Wn = 4.
This constraint avoids the trivial solution (all zeros) for
wp,. The simplest linear solution for criteria (a) and (b) is

— RGUE
o)+ p

(19)

Wm

where f is a small positive parameter, which prevents the
denominator from becoming zero. Ry, is defined as

4
Rave = ﬁ (20)

m=1 pd7 )+p

W, depends on the smooth measure at pixel z;;.

Fig. 2. Simulation results of deblurring using different regularizations. (a) Original image. (b) Blurred and noisy image. (¢) Deblurring result with GMRF
regularization. (d) Deblurring result with GWMRF regularization. (e) Deblurring result with HMRF regularization. (f) Deblurring result with HWMRF
regularization.
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4.3. Numerical solution

It is time-consuming to solve the super-resolution
problem in the form of matrix-vector because of the very
high dimensionality of vector z. A considerable speedup in
the super-resolution computation can be achieved by
taking advantage of the following two methods: imple-
menting advanced gradient based optimization techni-
ques and computing the gradient in an efficient manner.

In this paper, we derive the conjugate gradient (CG)
optimization method to solve the cost function (15). The
CG optimization utilizes conjugate direction instead of

local gradient to search for the minima. Therefore, it can
achieve faster convergence when compared to the
steepest descent method [32]. It also requires less storage
requirements and computation complexity compared
with the Quasi-Newton method.

The gradient of the cost function is denoted as
r@") = S AL (AZ" — yi) + AVI(Z"). The right term of the
gradient VI'(Z") is the derivative of the regularization
term with respect to z and can be approximated from the
estimated HR image. While the left term AT(Ax2" — yj) =
MIBTDT(DBMz" — y,) can be computed using basic image
operations such as warp, blur, and sampling instead of

Fig. 3. (a-f) Detail regions cropped from Fig. 2(a-f), respectively.
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Table 1 sparse matrices multiplications. The matrices My, B, D

The MSE errors of super-resolution reconstruction using different model the image formation process, and their implemen-

regularizations. tation is simply the image warping, blurring, and down-

GMRF  GWMRF  HMRE  HWMRF sampling, respectiyely. The ir.nplement.ati.on of their

transpose matrices is also very simple. DT is implemented

First experiment 18.79 14.61 12.91 9.73 by up-sampling the image without interpolation, i.e., by
Second experiment 77.54 72.02 71.85 62.51

zero padding. For a convolution blur, BT is implemented by
convolution with the flipped kernel of the imaging blur

Fig. 4. Results of super-resolution reconstruction using different regularizations. (a) Original image. (b) LR image. (¢) Reconstruction result with GMRF
regularization. (d) Reconstruction result with GWMREF regularization. (e) Reconstruction result with HMRF regularization. (f) Reconstruction result with
HWMREF regularization.
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kernel b(i,j). If M, is implemented by backward warping,
then M] should be the forward warping of the inverse
motion [33]. Thus, the gradient of the cost function with
the WMRF regularization is computed in an efficient
manner and the CG optimization technique can be used
without explicit construction of these large matrices.

5. Experiments

To test the performance of the proposed algorithm, a
number of experiments were conducted, four of which are

presented here. The first two were controlled simulated
experiments, and the last two were real surveillance
image sequences with unknown motion vectors. The
following mean square error (MSE) [34] was employed
as the quantitative measure:
Iz — 212

MSE = —— 22

S L1N; x [N, (22)
where LiN{L;N; is the total number of pixels in the HR
image, Z and z represent the reconstructed HR image and
the original image, respectively. Here the quadratic

Fig. 5. (a-e) Detailed regions cropped from Fig. 4(a, c-f), respectively.
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function and the Huber function are both chosen as the
function of smooth measure to compare the performance
of MRF and WMRF regularizations.

5.1. Controlled simulated experiments

In the first experiment, the superiority of the WMRF
regularization over MRF regularization was justified. We
corrupted an image by blurring it with a 3 x 3 Gaussian
blur kernel with standard deviation equal to 0.5. Gaussian
additive noise was added to the resulting blurred image to
achieve SNR equal to 25dB. If z and y represent the
original and corrupted images, and B represents the
matrix of blur kernel, the blurred noisy image can be
reconstructed by minimizing the following:

2 = argmin[ly — Bzl + AI'(2)] (23)

The criterion for regularization parameter selection in this
experiment was to choose parameters that produced the
most visually appealing results. Therefore, to ensure
fairness, each method was repeated several times with
different regularization parameters and the best result
was chosen as the output of the method [30].

Figs. 2(a) and 3(a) show the original image and its
zoom. Figs. 2(b) and 3(b) are the corrupted y = Bz +n,
where n is the Gaussian additive noise. The image was
reconstructed using MRF and WMRF regularizations, and
this scenario can be thought of as a super-resolution
reconstruction problem with a resolution enhancement
factor of one.

The reconstruction results are shown in Figs. 2 and 3.
The MSE errors of these results are listed in Table 1. The
selected threshold for Prewit operators is set to 35. When
the quadratic function is chosen as the function of the
smooth measure, the reconstruction result of GMRF
regularization is shown in Figs. 2(c), 3(c) and achieves
the smallest MSE error of 18.79; while Figs. 2(d) and 3(d)
are the reconstruction result of the proposed GWMRF
regularization, which has the best MSE value of 14.61.
When using the Huber function as the function of the
smooth measure, the reconstruction result of the edge-
preserving HMRF regularization proposed in [15] is shown
in Figs. 2(e), 3(e) and has the smallest MSE error of 12.91;
the proposed HWMRF regularization achieves the MSE
error of 9.73, and the reconstructed image is shown in
Figs. 2(f) and 3(f). From the comparison of Fig. 3(c-f), the
reconstruction result of GWMREF regularization is better
than GMRF and close to HMRF, while HWMRF achieves
the best result. We notice that whichever function is
chosen as the function of the smooth measure, the
proposed WMRF regularization achieves better results
than MRF regularization in terms of both the quantitative
measurements and visual evaluation.

Our second experiment uses “Cameraman” image to
validate the performance of our proposed algorithm. In
this experiment, a sequence of LR frames was created by
using one HR image shown in Fig. 4(a). First, this HR
image was shifted by one pixel in the vertical direction.
Then, to simulate the effect of camera PSF, this shifted
image was convolved with a symmetric Gaussian blur
kernel of size 5x5 with standard deviation equal

to 0.5. The resulting image was downsampled by the
factor of 2 in each direction. The same approach with
different motion vectors in the vertical and horizontal
directions was used to produce four LR images from the
original scene. Gaussian noise was added to the resulting
LR images to achieve a signal-to-noise ratio (SNR)
equal to 27 dB. One of these LR images is presented in
Fig. 4(b).

We used these four LR noisy images with a resolution
enhancement factor of 2 in this experiment. The results of
the super-resolution reconstruction are shown in Figs. 4
and 5. The MSE errors of these results are listed in Table 1.
The selected threshold for Prewit operators is 30. When
using the quadratic function as the function of the smooth
measure, MSE values of GMRF and GWMRF regularization
are equal to 77.54 and 72.02, respectively. The corres-
ponding result images are shown in Fig. 4(c) and (d),
respectively. Detailed regions cropped from Fig. 4(c) and
(d) are shown in Fig. 5(b) and (c), respectively. When using
the Huber function, MSE values of HMRF and HWMRF
regularization are equal to 71.85 and 62.51, respectively. The
corresponding results are shown in Fig. 4(e) and (f),
respectively. Detailed regions cropped from Fig. 4(e) and
(f) are shown in Fig. 5(d) and (e), respectively. It is evident
that the proposed WMRF regularization outperforms the
conventional MRF regularization in terms of both the
quantitative measurement and visual evaluation.

5.2. Surveillance sequences

Here we use real surveillance sequences to validate the
effectiveness of the proposed super-resolution method. It
is assumed that the motion of the images during the
sequence is a globally translational motion; the motions
between the reference image and the unreferenced
images can be estimated by the affine parameter model
introduced in Section 3.

The first surveillance sequence experiment shows a
SR reconstruction of a car sequence, which was obtained
from a surveillance video camera. One frame of this

Fig. 6. One frame in the car video. The car license plate boxed in dashes
is the selected ROL
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sequence is shown in Fig. 6. Here the car license plate with a standard deviation equal to 0.5. The selected

is selected as our ROI. We used five LR images with threshold for Prewit operators is 60. Fig. 7(b-d) shows the

frame 1 (the referenced frame) shown in Fig. 7(a) to bilinear interpolated image, the SR result using HMRF

obtain a resolution enhancement factor of 2. The camera regularization, and the result with HWMRF regularization,

blur kernel is assumed to be a 5x5 Gaussian kernel respectively. Detailed regions cropped from Fig. 7(b-d) are
a b

Q

Fig. 7. Results of super-resolution reconstruction using different regularizations. (a) Frame 1 of the surveillance sequence. (b) Bilinear interpolation. (c) SR

result with HMRF regularization. (d) SR result with HWMRF regularization.

—————

Fig. 8. (a-c) Detailed regions cropped from Fig. 7(b-d), respectively.



L. Zhang et al. / Signal Processing 90 (2010) 848-859 857

shown in Fig. 8(a-c), respectively. Evidently, the proposed Our second real experiment uses the disk surveillance
algorithm using HWMRF regularization has better visual sequence. Here we used five frames with frame 1 (the
quality than the conventional MAP algorithm with HMRF referenced frame) which is shown in Fig. 9(a). The camera
regularization. blur kernel is assumed to be a 5 x 5 Gaussian kernel with

Fig. 9. Results of super-resolution reconstruction using different regularizations. (a) Frame 1 of the surveillance sequence. (b) Bilinear interpolation. (c) SR
result with HMRF regularization. (d) SR result with HWMRF regularization. (e) SR result with HWMREF regularization of frame 3. (f) SR result with HWMRF
regularization of frame 5.
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Fig. 10. (a-e) Detailed regions cropped from Fig. 7(b-f), respectively.

a standard deviation equal to 0.5. The selected threshold
for Prewit operators is set to 30. Fig. 9(b-d) shows the
bilinear interpolated image, the SR result using HMRF
regularization, and the result with HWMRF regularization,
respectively. Detailed regions cropped from Fig. 9(b-d)
are shown in Fig. 10(a-c), respectively. It is apparent
that the proposed algorithm using HWMRF regulariza-
tion obtained more desirable result than the bilinear
interpolation and the conventional MAP algorithm with
HMRF regularization. Other frames of the surveillance
sequence can also be selected as the referenced frame, so
that we can obtain a HR surveillance sequence. SR

reconstruction results of frames 3 and 5 are showed in
Fig. 9(e-f), respectively. Detailed regions cropped from Fig.
9(e-f) are shown in Fig. 10(d-e), respectively.

6. Conclusions

This paper proposes an edge-preserving MAP estima-
tion based super-resolution algorithm by using the
weighted Markov random field regularization for a ROI
from several low-resolution surveillance images. The
motion of the ROI during the sequence is assumed to
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be globally translational and estimated by a parameter
model. CG optimization based on standard operations
on images such as convolution, warping, and sampling
is used to speedup the super-resolution computation.
The proposed algorithm was tested on different series
of synthetic images and real surveillance sequences.
Experimental results validated that the proposed algo-
rithm outperforms interpolation methods and conven-
tional MAP algorithm with HMRF regularization in terms
of both the quantitative measurements and visual
evaluation.
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